Admin:
- We'll go over midterm on Tuesday
- Project 1 released (discussed shortly) Due 3/14

HDSC:
- Another podcast (via Marine C.): http://www.thetalkingmachines.com/episodes

Project 1
- Go over project description
- Questions and comments

Entity Resolution and Record Linkage
Exploratory Data Analysis (via visualization)

Record Linkage

Given: Entity sets E_1, E_2

Goal: Match linked entities (e_1, e_2)

1) Define a similarity function $s(e_1, e_2)$
\[s(e_1, e_2) = \sum_{j \in A} s_j(e_{1j}, e_{2j}) \]

- **Categorical variables:**
 \[s_j(e_{1j}, e_{2j}) = \begin{cases} 1 & \text{if } e_{1j} = e_{2j} \\ 0 & \text{otherwise} \end{cases} \]

- **Numerical variables:**
 \[d_j(e_{1j}, e_{2j}) = (e_{1j} - e_{2j})^2 \]
\[d_j \left(e_{ij}, e_{ij} \right) = e^{-d_j} \]

2) Compute \(S_j (e_1, e_2) \) \(\forall e_1, e_2 \in E_1 \cup E_2 \)

3) Match \(e_1, e_2 \) based on similarity \(S_j (e_1, e_2) \)

Assumption
1) Each \(e_1 \) matches to a single \(e_2 \), \(e_2 \) can match to multiple \(e_1 \).
Match e_1 to
$$\arg\max_{e_2} S(e_1, e_2)$$

Assumption 2) One-to-one mapping

Matching problem (451)

G (optimal) Don't match e_1 if
$$\max_{e_2} S(e_1, e_2) < \text{too small}$$

Exploratory Data Analysis
Understanding the distribution of attribute values in an entity set

- Central tendency
- Spread
- Skew
- Outliers