Lesson Plan 3/13
Monday, March 12, 2018 3:29 PM

Admin
- Project 1 due tomorrow 3/14 24:00
- Change in grading weights

HDSC
- CBCB summer internship program: https://www.cbcb.umd.edu/summer-internships

Project 1
- Outstanding questions and comments
- Update to two table example (how to turn similarity matrix into data frame)

HW3
- Go over description
- Work on #1

Intro stats
- Random variables
- Discrete probability distributions
- Expectation

Estimation
- LLN
- CLT
- Normal distribution
- Continuous probability distributions
- CLT finalized

Homework 3, Q2

(a) Derive \bar{z}

(b) Derive S^2
\[\bar{z} = \frac{1}{n} \sum_{i=1}^{n} z_i \]
\[= \frac{1}{n} \sum_{i=1}^{n} k_i \frac{x_i}{s_{x0}} \]
\[= \frac{1}{s_x} \left[\frac{1}{n} \sum_{i=1}^{n} k_i \right] \]
\[= \frac{\bar{x}}{s_x} \]

\[s^2_x = \frac{1}{n} \sum_{i=1}^{n} (z_i - \bar{z})^2 \]
\[= \frac{1}{n} \sum_{i=1}^{n} \left(\frac{x_i}{s_x} - \frac{\bar{x}}{s_x} \right)^2 \]
\[= \frac{1}{s_x^2} \left(\frac{1}{n} \sum_{i=1}^{n} (k_i - \bar{x})^2 \right) \]
\[- \frac{1}{s_x^2} \times s_x^2 \]
\[= 1 \]

\[\rightarrow \text{Population vs. sample} \]

\[\rightarrow \text{Notation & properties} \]
-> Distributions of discrete variables

-> Central limit theorem

-> Expectation

Data: Tweets (about a specific topic) or hashtag

-> Bot or human
Entities: tweets

Attribute: bot or not

\[x_i \in \{0, 1\} \] observed

\[x_i \in \{0, 1\} \] random variable

\[P : \mathcal{D} \rightarrow \{0, 1\} \]

Density

\[p (x_i = x_i) > 0 \] \[x_i \in \mathcal{D} \]
\(\sum p(X_i = x_i) = 1 \) \\
\(\Rightarrow \) \text{calc} \\
\(p(X_i = 1) = 0.7 \) \\
\(\Rightarrow \) \text{Expectation} \\
\[E X_i = \sum_{x_i \in \mathcal{D}} x_i \cdot p(X_i = x_i) \] \\
\[E X_i = 0 \times p(X_i = 0) + 1 \times p(X_i = 1) \]
Estimation

1. Compute sample mean
2. Set equal to expected value
3. Solve!

\[n = 100 \]
\[X_i \in [0, 13], \ldots, X_n \in [0, 13] \]

\[\frac{1}{n} \sum_{i} X_i \]
(2) \[\mathbb{E} \left[\frac{1}{n} \sum X_i \right] = \frac{1}{n} \sum \mathbb{E} X_i = \frac{1}{n} \sum \rho = \rho \]

(3) \[\hat{\theta} = \bar{x} \]

Estimate